
Assert Control Over Your
Legacy Applications

with TestBox

By Ed Bartram

Ed Bartram
● ColdFusion Developer since

2000 using version 4.5
● Previously co-manager of

Chicagoland CFUG (CCFUG) and
Nebraska CFUG (NECFUG)

● First Time Conference Speaker

Assert Control Over Your
Legacy Applications

with TestBox

By Ed Bartram

"To me, legacy code is simply
code without tests."
― Michael C. Feathers, Working
Efectively with Legacy Code

“Regardless of what we discover, we understand and truly believe
that everyone did the best job they could, given what they knew
at the time, their skills and abilities, the resources available, and
the situation at hand.”
― Norm Kerth, Project Retrospectives: A Handbook for Team Review

What are tests? Why do we need them?

Test Types Comparison

Type of Test Complexity Speed Amount Focus Scope

Unit Simple Fast Many Implementation Unit

Integration
Simple –

Hard Slow Some Implementation Unit(s)

End to End (E2E) –
Acceptance Complex Slow Few Behavior

Feature,
Application

End to End (E2E) –
Functional Complex Slow Few Behavior

Feature,
Application

Pre-Launch
● Separate Development

Environment
● Version Control
● CFCs
● ColdFusion Framework
● Documented Coding Standards
● Peer Code Reviews

Properties of a Unit Test
● Repeatable
● Easy to implement
● Relevant tomorrow
● Push button executable
● Runs quickly
● Consistent in results
● Full control of unit under test
● Fully isolated
● Pinpoint cause of failures

Test Driven Development (TDD)
”Red, Green, Refactor”

But Wait!

I already have code written without tests!

How do I follow TDD when making changes to
my existing code?

TDD for Legacy Code

Installing TestBox

● Install with CommandBox

● Download from ForgeBox and install manually unzipping file into /testbox folder

● Clone GitHub repository
git clone git://github.com/ortus-solutions/testbox testbox

● Can install to another folder by creating a mapping:
this.mappings["/testbox"] = expandPath("C:/frameworks/testbox/")

Supported CFML Engines
● ColdFusion 9, 10, or Railo 4.1 last

supported on TestBox 2.3.0
● ColdFusion 11+ and Lucee 4.5+

currently supported
● Older versions are marked as releases

on GitHub

Test Suites
● Tests go in /tests folder

● Recommend to split tests by type into
unit, integration, and specs folders

● Mirror your site’s structure in tests
folders

● Mirror your objects using same name
followed by the Test sufix

● Copy \testbox\test-browser\index.cfm to
/tests and change rootMapping to
“\tests\”

Extend the TestBox Framework

Life Cycle Methods

setup() example

Unit Test Design Pattern

Assertions
$assert.isTrue(actual)
$assert.isFalse(actual)

$assert.isEqual(expected, actual)
$assert.isNotEqual(expected, actual)

$assert.null(actual)
$assert.notNull(actual)

$assert.typeOf(“type”, actual)
$assert.notTypeOf(“type”, actual)

$assert.instanceOf(“type”, actual)
$assert.notInstanceOf(“type”, actual)

$assert.isGT(actual, target)
$assert.isGTE(actual, target)
$assert.isLT(actual, target)
$assert.isLTE(actual, target)

$assert.isEmpty(actual)
$assert.isNotEmpty(actual)

$assert.lengthOf(actual, length)
$assert.notLengthOf(actual, length)

$assert.key(actual, key)
$assert.notKey(actual, key)

& many more

Skips, Fails & Errors

Test Runners

Isolating Dependencies

Refactoring

“… is a disciplined technique for restructuring an existing body
of code, altering its internal structure without changing its

external behavior”

― Martin Fowler, refactoring.com

Refactoring Example

Refactoring Example Continued

Test Doubles
Test Stub

Mock Object

Test Spy

Fake Object

Dummy Object

Test Double Example

Properties of Unit Tests
● Repeatable
● Easy to implement
● Relevant tomorrow
● Push button executable
● Runs quickly
● Consistent in results
● Full control of unit under test
● Fully isolated
● Pinpoint cause of failures

Unit Test Definition

“A unit test is an automated piece of
code that invokes the unit of work
being tested, and then checks some
assumptions about a single end
result of that unit. A unit test is
almost always written using a unit
testing framework. It can be written
easily and runs quickly. It's
trustworthy, readable, and
maintainable. It's consistent in its
results as long as production code
hasn't changed.”

“Integration testing [as] testing a unit of work without having full
control over all of it and using one or more of its real

dependencies, such as time, network, database, threads, random
number generators, and so on.”

― Roy Osherove, The Art of Unit Testing

Do’s
● Never make a change to code until

you have a working unit test.

● Test all logic branches including
conditionals, loops, calculations, or
any other decision making code.

● In an MVC framework, you only write
tests for your Model, this is where all
your logic and external dependencies
should go. Your handler should be
brain dead and contain zero logic

Don’ts
● Chaining methods AKA “Train Wrecks”

getThis().getThat().getAnotherThing()
they violate the Law of Demeter

● Changing persistent data

● Running slow

● Tests depending or afecting other tests

Homework
● querySim()

● runners

● reporting

● annotations

● custom assertions

● mockbox

● IDE Integration
CF Builder, Sublime, and VS Code

● Test Doubles

● Asynchronous Tests

● Behavior Driven Development (BDD)

● Automated Builds

● Continuous Integration

● Code Metrics

Summary
● Refactor your Legacy Code using Tests

● Focus on Unit Testing and add
Integration and E2E tests as needed

● Write Unit Tests using properties and
definition

● TDD – Always write your tests before
writing new code or touching existing
code

● Use a Testing Framework like TestBox

● Isolate your dependencies in your
code and use Test Doubles in your
tests

● Refactoring is restructuring code
without changing its external behavior

Thank You!
Ed Bartram

Web: edbartram.com

Slack: edbartram

GitHub: edbartram

Twitter: @edbartram

LinkedIn: in/edbartram

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

